Лекция №1




Скачать 142.24 Kb.
НазваниеЛекция №1
Дата публикации09.08.2013
Размер142.24 Kb.
ТипЛекция
www.zadocs.ru > Биология > Лекция
Лекция №1.

Введение в молекулярную биологию. Развитие научного направления. Взаимосвязь наук, создавших молекулярную биологию. Основные этапы развития и наиболее крупные открытия молекулярной биологии. Теломераза.
План лекции:

  1. Определение предмета молекулярной биологии. Развитие научного направления. Взаимосвязь наук, создавших молекулярную биологию.

  2. Основные этапы развития и наиболее крупные открытия молекулярной биологии.

  3. Ядро. Компоненты ядра.

  4. Теломеры и теломераза.

  5. Теломераза и старение.

  6. Теломераза и онкогенез.



1. Определение предмета молекулярной биологии.
Молекулярная биология - это наука о механизмах хранения, воспроизведения, передачи и реализации генетической информации, о структуре и функциях нерегулярных биополимеров - нуклеиновых кислот и белков.

Молекулярная биология – крайне современная наука с полувековой историей. Т.е., с одной стороны, она накопила огромный запас уже устоявшихся фактов, - когда то поражавших воображение и порой переворачивающих прежние догмы. А с другой стороны, она продолжает стремительно развиваться, поднимая новые проблемы и рождая новые идеи.

Термин "молекулярная биология" принадлежит британскому молекулярному биологу, врачу и нейробиологу Фрэнсису Крику - Лауреату Нобелевской премии по физиологии и медицине 1962 г. которому надоело в ответ на вопрос о его профессии объявлять себя смесью кристаллографа, биохимика, биофизика и генетика.

^ Взаимосвязь наук, создавших молекулярную биологию.

Молекулярная биология возникла как наука в 30х годах двадцатого столетия. С тех пор эта наука расширяется захватывая приграничные области между химией, физикой и биологией. Первоначально молекулярная биология развивалась как биохимия нуклеиновых кислот. В дальнейшем молекулярная биология стала изучать путь передачи наследственной информации и биологического синтеза белковых структур.

Начав с изучения биологических процессов на молекулярно-атомном уровне, молекулярная биология перешла к сложным надмолекулярным клеточным структурам, а в настоящее время успешно решает проблемы генетики, физиологии, эволюции и экологии.

2. Основные этапы развития и наиболее крупные открытия в молекулярной биологии.


  1. Романтический период 1935-1944гг.

Макс Дельбрюк и Сальвадор Лурия занимались изучением репродукции фагов и вирусов, представляющих собой комплексы нуклеиновых кислот с белками

В 1940г. Джордж Бидл и Эдуард Татум сформулировали гипотезу  - "Один ген - один фермент". Однако, что такое ген в физико-химическом плане тогда еще не знали.

  1. Второй романтический период 1944-1953гг.

Была доказана генетическая роль ДНК. В 1953 г. появилась модель двойной спирали ДНК, за которую ее создатели Джеймс Уотсон, Френсис Крик и Морис Уилкинс были удостоены Нобелевской премии.

^ 3. Догматический период 1953-1962гг.

Сформулирована центральная догма молекулярной биологии:

Перенос генетической информации идет в направлении ДНК→РНК→БЕЛОК

В 1962 г. был расшифрован генетический код.

4. Академический период с 1962г. по настоящее время, в котором с 1974 года выделяют генно-инженерный подпериод.

Основные открытия

1944г. - Доказательство генетической роли ДНК. Освальд Эйвери, Колин Мак-Леод, Маклин Мак-Карти.

1953г. - Установление структуры ДНК. Джеймс Уотсон, Френсис Крик.

1961г. - Открытие генетической регуляции синтеза ферментов. Андре Львов, Франсуа Жакоб, Жак Моно.

1962г. - Расшифровка генетического кода. Маршалл Нирнберг, Генрих Маттеи, Северо Очоа.

1967г. - Синтез in vitro биологически активной ДНК. Артур Корнберг (неформальный лидер молекулярной биологии).

1970г. - Химический синтез гена. Гобинд Корана.

1970г. - Открытие фермента обратной транскриптазы и явления обратной транскрипции. Говард Темин, Дэвид Балтимор, Ренато Дульбеко.

1974г. - Открытие рестриктаз. Гамильтон Смит, Даниэль Натанс, Вернер Арбер.

1978г. - Открытие сплайсинга. Филипп Шарп.

1982г. - Открытие автосплайсинга. Томас Чек.


3. Ядро. Компоненты ядра.
Ядро эукариотической клетки при микроскопии обычно выглядит как крупная округлая структура вблизи центра клетки.

Внутри ядра находится структура, называемая ядрышком. В нем находятся хромосомы, содержащие петли ДНК и большие скопления генов рибосомной рибонуклеиновой кислоты (рРНК). Каждое такое скопление генов называется ядрышковым организатором.

Ядерная оболочка – двойная мембранная структура, которая окружает хроматин и переходит в эндоплазматический ретикулум (ЭР). Внутренняя мембрана по составу белков отличается от наружной мембраны. Внутренний слой мембраны имеет волокнистую сеть белков, называемых ламинами, которые играют ключевую роль в поддержании структурной целостности мембраны. Наружная мембрана ядра переходит в мембрану ЭР и содержит белки, необходимые для связывания рибосом.

Ядерная пора и ядерный поровый комплекс – гигантские макромолекулярные комплексы, которые обеспечивают активный обмен белков и рибонуклеопротеидов между ядром и цитоплазмой. Ядерный поровый комплекс (ЯПК) формирует цилиндр, и имеет восьмиугольную симметрию. ЯПК состоит из 100-200 белков, он имеет массу 124х106 дальтон, что примерно в 30 раз больше массы рибосомы.

Этот комплекс – основные ворота для веществ, которые постоянно перемещаются внутрь ядра и из него. Например, матричная РНК (мРНК), субъединицы рибосом, гистоны, рибосомные белки, факторы транскрипции, ионы и мелкие молекулы быстро обмениваются между ядром и полостью эндоплазматического ретикулума или цитозолем.

Хромосомы (др. греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки (клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Хромосома - постоянный компонент ядра, отличающийся особой структурой, индивидуальностью, функцией и способностью к самовоспроизведению, что обеспечивает их преемственность, а тем самым и передачу наследственной информации от одного поколения растительных и животных организмов к другому. В ядре каждой соматической клетки организма человека содержится 46 хромосом. Набор хромосом каждого индивидуума, как нормальный, так и патологический, называется кариотипом. Из 46 хромосом, составляющих хромосомный набор человека, 44 или 22 пары представляют аутосомные хромосомы, последняя пара — половые хромосомы. У женщин конституция половых хромосом в норме представлена двумя хромосомами X, а у мужчин — хромосомами X и У. Во всех парах хромосом как аутосомных, так и половых одна из хромосом получена от отца, а вторая — от матери. Хромосомы одной пары называются гомологами, или гомологичными хромосомами. В половых клетках (сперматозоидах и яйцеклетках) содержится гаплоидный набор хромосом, т.е. 23 хромосомы.

Хроматин - основной компонент клеточного ядра. В среднем в хроматине 40% приходится на ДНК и около 60% на белки. В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида, которые состоят из ДНК, ассоциированной с гистонами и иногда еще с негистоновыми белками. Способность к дифференциальному окрашиванию легла в основу выявления двух фракций хроматина – гетеро – и эухроматина. Хейтц, открывший это явление, нашел, что определенные участки хромосом остаются в конденсированном состоянии в течении всего клеточного цикла и назвал их гетерохроматин, а участки, деконденсирующиеся в конце митоза и слабо окрашенные – эухроматином. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых и локализована большая часть известных генов. Однако, гетерохроматин имеет определенное генетическое влияние; к примеру, определяющие пол хромосомы не могут рассматриваться как генетически неактивные, хотя они часто полностью состоят из гетерохрома тина. Кроме того, установлено, что стабильность генетического выражения эухроматина обуславливается близостью к гетерохроматину.

Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции).

^ Принципы строения ДНК

1. Нерегулярность. Существует регулярный сахарофосфатный остов, к которому присоединены азотистые основания. Их чередование нерегулярно.

2. Антипараллельность. ДНК состоит из двух полинуклеотидных цепей, ориентированных антипараллельно. 3`-конец одной расположен напротив 5`-конца другой.

3. Комплементарность (дополнительность). Каждому азотистому основанию одной цепи соответствует строго определенное азотистое основание другой цепи. Соответствие задается химией. Пурин и пиримидин в паре образуют водородные связи. В паре A-Т две водородные связи, в паре Г-Ц - три.

4. ^ Наличие регулярной вторичной структуры. Две комплементарные, антипараллельно расположенные полинуклеотидные цепи образуют правые спирали с общей осью.

^ Формы двойной спирали ДНК

Существуют несколько форм двойной спирали ДНК. В основной - В-форме на виток приходится 10 комплементарных пар. Плоскости азотистых оснований перпендикулярны оси спирали. Соседние комплементарные пары повернуты друг относительно друга на 36°. Диаметр спирали 20Å, причем пуриновый нуклеотид занимает 12Å, а пиримидиновый - 8Å. А-форма - 11 пар азотистых оснований на виток. Плоскости азотистых оснований отклонены от нормали к оси спирали на 20°. Отсюда следует наличие внутренней пустоты диаметром 5Å. Высота витка 28Å. Такие же параметры у гибрида из одной цепи ДНК и одной цепи РНК. С-форма - шаг спирали 31Å, 9.3 пар оснований на виток, угол наклона к перпендикуляру 6°. Все три формы - правозакрученные спирали. Есть еще несколько форм правых спиралей и всего одна левая спираль (Z -форма). Высота витка в Z-форме -44.5 Å, на виток приходится 12 пар нуклеотидов. Ни А-, ни Z- формы не могут существовать в водном растворе без дополнительных воздействий (белки или суперспирализация).

4. Теломеры и теломераза.
Теломерная ДНК имеет определенный состав, а для поддержания ее длины, как правило, используется специальный фермент — теломераза.

Рассмотрим ряд важных вопросов, касающихся теломер и теломеразы.

Теломераза — фермент, добавляющий особые повторяющиеся последовательности ДНК (ТТАГГГ у позвоночных) к 3'-концу цепи ДНК на участках теломер, которые располагаются на концах хромосом в эукариотических клетках. Теломеры содержат уплотненную ДНК и стабилизируют хромосомы. При каждом делении клетки теломерные участки укорачиваются.

Теломераза является обратной транскриптазой, причем с ней связана особая молекула РНК, которая используется в качестве матрицы для обратной транскрипции во время удлинения теломер. Теломераза была обнаружена Кэрол Грейдер в 1984 году. Теломе́ры (от др. греч. τέλος — конец и μέρος — часть) — концевые участки хромосом. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию. Термин «теломера» предложил Г. Мёллер в 1932 г.

У большинства эукариот теломеры состоят из специализированной линейной хромосомной ДНК, состоящей из коротких тандемных повторов. В теломерных участках хромосом ДНК вместе со специфически связывающимися с теломерными ДНК-повторами белками образует нуклеопротеидный комплекс — конститутивный (структурный) теломерный гетерохроматин. Теломерные повторы — весьма консервативные последовательности, например повторы всех позвоночных состоят из шести нуклеотидов TTAGGG, повторы всех насекомых — TTAGG, повторы большинства растений — TTTAGGG.

Ученые из университета Кардиффа (Cardiff University) установили, что критическая длина человеческой теломеры, при которой хромосомы начинают соединяться друг с другом, составляет 12,8 теломерных повторов.

Существует специальный фермент — теломераза, который при помощи собственной РНК-матрицы достраивает теломерные повторы и удлиняет теломеры. В большинстве дифференцированных клеток теломераза заблокирована, однако активна в стволовых и половых клетках.

^ Структура теломер.

Известна нуклеотидная структура теломерных последовательностей ДНК. Более высокие уровни организации образуются за счет специфических белков. Эти белки, в отличие от обычных гистонов, не образуют нуклеосомные глобулы. Нуклеосомная структура в достаточно коротких теломерах не обнаружена. Хотя длинные теломеры мышей имеют нуклеосомную организацию. Самые известные среди теломерных белков — белок Rapl (у дрожжей) и его аналог белок TRF1 (у млекопитающих). Благодоря этим белкам, теломеры имеют плотную упаковку, т. е. относятся к фракции гетерохроматина. Такая структура делает теломеры весьма стабильными. В частности, теломерные повторы недоступны для теломеразы на протяжении большей части клеточного цикла. Очевидно, в S-фазе в ответ на некий сигнал белок TRF1 диссоциирует от теломеры — начинается ее удлинение. Затем же он вновь связывается и тем самым предупреждает избыточный рост теломеры.

По той же причине теломерные участки ДНК малодоступны для других ферментов — ДНК-метилаз и эндонуклеаз. В связи с последним обстоятельством, при мейозе в области теломер очень низка частота двухцепочечных разрывов. Наконец, с помощью теломерных белков теломеры крепятся к компонентам ядерного матрикса, в т.ч., возможно, к ядерной ламине (пластинке, связанной с внутренней ядерной мембраной). Действительно ли во все клетках теломеры прикреплены к ядерной мембране, пока не вполне ясно. Но, по крайней мере, на ранних и средних стадиях профазы мейоза такая связь, бесспорно, существует.Полагают также, что теломерная ДНК образует несколькопетель (в виде «лепестков ромашки»), фиксированных на матриксе, и по мере укорочения теломер число «лепестков» постепенно уменьшается.

Функции теломер:

1. Некоторые функции можно условно обозначить как механические.

а) Теломеры участвуют в фиксации хромосом к ядерному матриксу (правильная ориентации хромосом в ядре)

б) Теломеры сцепляют друг с другом концы сестринских хроматид (образующихся в хромосоме после S-фазы).

Возможно, это сцепление происходит за счет гибридизации теломерсестринских ДНК. В то же время структура теломер такова, что допускает расхождение хроматид в анафазе. Однако возможна мутация (науровне гена теломеразной РНК), которая меняет нуклеотидную последовательность теломер; тогда расхождение хроматид блокируется.

2. Функции второй группы — стабилизационные.

а) Если в клетке нет теломеразы (или ALT), то наличие теломер предохраняет от недорепликации генетически значимые отделы ДНК.

б) Если же в клетке есть теломеразная активность, то появляется еще одна возможность — стабилизация концов разорванных хромосом.

Так, при случайном разрыве хромосомы образуются фрагменты, на одном или на обоих концах которых нет теломерных повторов. В отсутствие теломеразы эти фрагменты претерпевают слияния и деградацию, что блокирует клеточный цикл и ведет клетку к гибели. В присутствии же теломеразы к местам разрыва присоединяется теломерная ДНК. Это стабилизирует хромосомные фрагменты и позволяет им функционировать.

3. Влияние на экспрессию генов.

Еще одно интереснейшее свойство теломер обозначается как эффект положения: активность генов, расположенных рядом с теломерами, снижена (репрессирована). Такой эффект часто обозначается как транскрипционное молчание, или сайленсинг. При значительном же укорочении теломер эффект положения пропадает и прителомерные гены активируются.

4. «Счетная» функция.

Наконец, теломерные отделы ДНК выступают в качестве часового устройства (т. н. репликометра), которое отсчитывает количество делений клетки после исчезновения теломеразной активности. Действительно, каждое деление приводит к укорочению теломеры на 50-65 н.п. Причем гораздо важней для клетки не то, сколько делений уже прошло, а сколько еще осталось до критического укорочения теломеры. Поэтому можно сказать и так, что теломеры — устройство, определяющее количество делений, которые способна совершить нормальная клетка в отсутствие теломеразы.

Достигая же критически короткой длины, теломеры теряют возможность выполнять все или многие из вышеперечисленных функций. Нарушается клеточный цикл, и в конечном счете клетка погибает.


5. Теломераза и старение.
В 1971 г. Оловников на основании появившихся к тому времени данных о принципах синтеза ДНК в клетках предложил гипотезу маргинотомии , объясняющую механизм работы такого счетчика. По мнению автора гипотезы, при матричном синтезе полинуклеотидов ДНК-полимераза не в состоянии полностью воспроизвести линейную матрицу, реплика получается всегда короче в ее начальной части. Таким образом, при каждом делении клетки ее ДНК укорачивается, что ограничивает пролиферативный потенциал клеток и, очевидно, является тем "счетчиком" числа делений и, соответственно, продолжительности жизни клетки в культуре. В 1972 г. Медведев показал, что повторяющиеся копии функциональных генов могут запускать процесс старения или управлять им.

Многочисленные проверки показали, что гибель культуры — не случайность, обусловленная неблагоприятными условиями роста, а всегда повторяющаяся закономерность: деления. Линия делящихся соматических клеток вовсе не бессмертна; старение — это свойство самих клеток, причем оно даже запрограммировано в геноме клеток, поскольку наступает после определенного числа делений. Это критическое число делений получило название - лимита Хейфлика.

Лимит Хейфлика объяснялся укорочением хромосом, и одновременно допускалось, что к этому эффекту сводится основная суть старения.

6. Теломераза и онкогенез.
Кроме старения, теломеры и теломераза связаны с другой важнейшей биологической проблемой — проблемой опухолевого роста (онкогенезом).

Эта связь с наибольшей очевидностью продемонстрирована на культурах клеток.

Получение линий опухолевых клеток.

^ Общие сведения.

Нормальные соматические клетки, делятся в культуре ограниченное количество раз. В отличие от этого, опухолевые клетки в своих делениях не имеют какого-либо предела: их популяция может удваиваться бесконечно. Чтобы подчеркнуть данную особенность таких клеток, их часто называют иммортализованными («бессмертными»).

Получить «бессмертные» линии можно двумя способами:

- либо трансформировать нормальные клетки in vitro,

- либо выделить клетки из опухоли, растущей in vivo.

В обоих случаях культивировать иммортализованную линию можно опять-таки двумя способами:

- in vitro, т. е. путем пересева клеток в новые флаконы после каждого удвоения популяции,

- in vivo — путем регулярного пересева клеток здоровым животным.

Так, например, трансформированные in vitro клетки нередко вводят в организм животного, где они вызывают опухоль.

И наоборот: выделенные из первичной опухоли клетки десятилетиями культивируют in vitro.

Первичные опухоли: экспериментальные факты.

Первичные опухоли исследованы в отношении теломер и теломеразы и менее подробно. Но имеющиеся данные вполне согласуются с предыдущими данными. Так, были протестированы на теломеразную активность несколько тысяч образцов опухолей человека. В подавляющем большинстве (85%) злокачественных новообразований обнаружена теломеразная активность. Некоторым исключением оказался ряд злокачественных опухолей головы, где фермент был выявлен лишь в 40-60% случаев.

Напротив: в доброкачественных опухолях частота обнаружения фермента в целом такая же, как в нормальных тканях (27%). На этом основании теломеразу считают биохимическим маркером злокачественных опухолей человека.

Добавить документ в свой блог или на сайт

Похожие:

Лекция №1 iconКурс лекций (под редакцией профессора В. Ф. Беркова) 2-е издание...
Авторский коллектив: Н. С. Щекин (лекция 8); Г. И. Касперович (лекция 9); В. Ф. Берков (лекция 10); И. Г. Подпорин (лекция 11); В....

Лекция №1 iconЛекция I и проблема языка и сознания лекция II 31 слово и его семантическое...
Монография представляет собой изложение курса лекций, про* читанных автором на факультете психологии Московского государственного...

Лекция №1 iconЛекция I и проблема языка и сознания лекция II 31 слово и его семантическое...
Монография представляет собой изложение курса лекций, про* читанных автором на факультете психологии Московского государственного...

Лекция №1 iconМетодические рекомендации вводная лекция введение в курс лекция 2
Лекция 15. Финансирование государственной службы. Контроль и надзор за соблюдением законодательства о государственной службе

Лекция №1 iconЛекция религии современных неписьменных народов: человек и его мир...
Редактор Т. Липкина Художник Л. Чинёное Корректор Г. Казакова Компьютерная верстка М. Егоровой

Лекция №1 iconЛекция I. Предмет, система и основные понятия
Лекция II. Судебная власть и правосудие

Лекция №1 iconЛекция 5
Лекция Государственное регулирование внешнеэкономической деятельности: сущность, методы (тарифные и нетарифные)

Лекция №1 iconЛекция роль государства и права в жизни общества 2 часа 8 Лекция...
Лекция основные правовые системы современности. Международное право как особая система права – 2 часа 65

Лекция №1 iconЛекция Эстетика как философская наука
Лекция Модернизм и постмодернизм в искусстве и эстетической теории ХХ века

Лекция №1 iconЛекция №1 Курс «Метрология и стандартизация»
Введение. Предмет дисциплины. Краткие сведения из истории метрологии и стандартизации (Лекция №1)

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
www.zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов